Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation.

نویسندگان

  • Pierre Pouponneau
  • Jean-Christophe Leroux
  • Gilles Soulez
  • Louis Gaboury
  • Sylvain Martel
چکیده

Magnetic tumor targeting with external magnets is a promising method to increase the delivery of cytotoxic agents to tumor cells while reducing side effects. However, this approach suffers from intrinsic limitations, such as the inability to target areas within deep tissues, due mainly to a strong decrease of the magnetic field magnitude away from the magnets. Magnetic resonance navigation (MRN) involving the endovascular steering of therapeutic magnetic microcarriers (TMMC) represents a clinically viable alternative to reach deep tissues. MRN is achieved with an upgraded magnetic resonance imaging (MRI) scanner. In this proof-of-concept preclinical study, the preparation and steering of TMMC which were designed by taking into consideration the constraints of MRN and liver chemoembolization are reported. TMMC were biodegradable microparticles loaded with iron-cobalt nanoparticles and doxorubicin (DOX). These particles displayed high saturation magnetization (Ms = 72 emu g(-1)), MRI tracking compatibility (strong contrast on T2∗-weighted images), appropriate size for the blood vessel embolization (∼50 μm), and sustained release of DOX (over several days). The TMMC were successfully steered in vitro and in vivo in the rabbit model. In vivo targeting of the right or left liver lobes was achieved by MRN through the hepatic artery located 4 cm beneath the skin. Parameters such as flow velocity, TMMC release site in the artery, magnetic gradient and TMMC properties, affected the steering efficiency. These data illustrate the potential of MRN to improve drug targeting in deep tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Magnetic Graphene Oxide Nanocarrier as a drug delivery vehicle for MRI monitored magnetic targeting of rat brain tumors

Introduction: Glioblastoma multiform is the most common malignant brain tumor, with an invasive nature. Despite the development of conventional therapies such as surgery, radiotherapy and chemotherapy, because of high recurrence rates, the prognosis remains very poor. Over the last decade, nanotechnology has represented an innovative method as nanoparticle-based drug delivery ...

متن کامل

Magnetic Resonance Imaging Property of Doxorubicin-Loaded Gadolinium/13X Zeolite/Folic Acid Nanocomposite

Background: Magnetic resonance imaging (MRI) using nanostructures has been a proper method for tumor targeting purposes. Different MRI nanomaterials, targeting agents and anticancer drugs have been used for targeting of tumors. Objectives: This study aims to consider the MRI property of doxorubicin (DOX)-loaded gadolinium/13X zeolite/folic acid (Gd3+/13X/FA) nanocomposite.<br /...

متن کامل

Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery

In this study, the authors constructed a novel PLGA [poly(D,L-lactic-co-glycolic acid)]-based polymeric nanocarrier co-encapsulated with doxorubicin (DOX) and magnetic Fe(3)O(4) nanoparticles (MNPs) using a single emulsion evaporation method. The DOX-MNPs showed high entrapment efficiency, and they supported a sustained and steady release of DOX. Moreover, the drug release was pH sensitive, wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 32 13  شماره 

صفحات  -

تاریخ انتشار 2011